Tutorial: Comprehensions, Iterators, and Iterables#
Author: Florent Hivert <florent.hivert@univ-rouen.fr> and Nicolas M. Thiéry <nthiery at users.sf.net>
List comprehensions#
List comprehensions are a very handy way to construct lists in Python. You can use either of the following idioms:
[ <expr> for <name> in <iterable> ]
[ <expr> for <name> in <iterable> if <condition> ]
For example, here are some lists of squares:
sage: [ i^2 for i in [1, 3, 7] ]
[1, 9, 49]
sage: [ i^2 for i in range(1,10) ]
[1, 4, 9, 16, 25, 36, 49, 64, 81]
sage: [ i^2 for i in range(1,10) if i % 2 == 1]
[1, 9, 25, 49, 81]
[ i^2 for i in [1, 3, 7] ] [ i^2 for i in range(1,10) ] [ i^2 for i in range(1,10) if i % 2 == 1]
And a variant on the latter:
sage: [i^2 if i % 2 == 1 else 2 for i in range(10)]
[2, 1, 2, 9, 2, 25, 2, 49, 2, 81]
[i^2 if i % 2 == 1 else 2 for i in range(10)]
One can use more than one iterable in a list comprehension:
sage: [ (i,j) for i in range(1,6) for j in range(1,i) ]
[(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (5, 4)]
[ (i,j) for i in range(1,6) for j in range(1,i) ]
Warning
Mind the order of the nested loop in the previous expression.
If instead one wants to build a list of lists, one can use nested lists as in:
sage: [ [ binomial(n, i) for i in range(n+1) ] for n in range(10) ]
[[1],
[1, 1],
[1, 2, 1],
[1, 3, 3, 1],
[1, 4, 6, 4, 1],
[1, 5, 10, 10, 5, 1],
[1, 6, 15, 20, 15, 6, 1],
[1, 7, 21, 35, 35, 21, 7, 1],
[1, 8, 28, 56, 70, 56, 28, 8, 1],
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]]
[ [ binomial(n, i) for i in range(n+1) ] for n in range(10) ]
Iterators#
Definition#
To build a comprehension, Python actually uses an iterator. This is
a device which runs through a bunch of objects, returning one at each
call to the next
method. Iterators are built using parentheses:
sage: it = (binomial(8, i) for i in range(9))
sage: next(it)
1
it = (binomial(8, i) for i in range(9)) next(it)
sage: next(it)
8
sage: next(it)
28
sage: next(it)
56
next(it) next(it) next(it)
You can get the list of the results that are not yet consumed:
sage: list(it)
[70, 56, 28, 8, 1]
list(it)
Asking for more elements triggers a StopIteration
exception:
sage: next(it)
Traceback (most recent call last):
...
StopIteration
next(it)
An iterator can be used as argument for a function. The two following idioms give the same results; however, the second idiom is much more memory efficient (for large examples) as it does not expand any list in memory:
sage: sum([binomial(8, i) for i in range(9)])
256
sage: sum(binomial(8, i) for i in range(9))
256
sum([binomial(8, i) for i in range(9)]) sum(binomial(8, i) for i in range(9))
Typical usage of iterators#
Iterators are very handy with the functions all()
, any()
,
and exists()
:
sage: all([True, True, True, True])
True
sage: all([True, False, True, True])
False
all([True, True, True, True]) all([True, False, True, True])
sage: any([False, False, False, False])
False
sage: any([False, False, True, False])
True
any([False, False, False, False]) any([False, False, True, False])
Let’s check that all the prime numbers larger than 2 are odd:
sage: all( is_odd(p) for p in range(1,100) if is_prime(p) and p>2 )
True
all( is_odd(p) for p in range(1,100) if is_prime(p) and p>2 )
It is well know that if 2^p-1
is prime then p
is prime:
sage: def mersenne(p): return 2^p -1
sage: [ is_prime(p) for p in range(20) if is_prime(mersenne(p)) ]
[True, True, True, True, True, True, True]
def mersenne(p): return 2^p -1 [ is_prime(p) for p in range(20) if is_prime(mersenne(p)) ]
The converse is not true:
sage: all( is_prime(mersenne(p)) for p in range(1000) if is_prime(p) )
False
all( is_prime(mersenne(p)) for p in range(1000) if is_prime(p) )
Using a list would be much slower here:
sage: %time all( is_prime(mersenne(p)) for p in range(1000) if is_prime(p) ) # not tested
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00 s
False
sage: %time all( [ is_prime(mersenne(p)) for p in range(1000) if is_prime(p)] ) # not tested
CPU times: user 0.72 s, sys: 0.00 s, total: 0.73 s
Wall time: 0.73 s
False
%time all( is_prime(mersenne(p)) for p in range(1000) if is_prime(p) ) # not tested %time all( [ is_prime(mersenne(p)) for p in range(1000) if is_prime(p)] ) # not tested
You can get the counterexample using exists()
. It takes two
arguments: an iterator and a function which tests the property that
should hold:
sage: exists( (p for p in range(1000) if is_prime(p)), lambda p: not is_prime(mersenne(p)) )
(True, 11)
exists( (p for p in range(1000) if is_prime(p)), lambda p: not is_prime(mersenne(p)) )
An alternative way to achieve this is:
sage: counter_examples = (p for p in range(1000) if is_prime(p) and not is_prime(mersenne(p)))
sage: next(counter_examples)
11
counter_examples = (p for p in range(1000) if is_prime(p) and not is_prime(mersenne(p))) next(counter_examples)
itertools#
At its name suggests itertools
is a module which defines
several handy tools for manipulating iterators:
sage: l = [3, 234, 12, 53, 23]
sage: [(i, l[i]) for i in range(len(l))]
[(0, 3), (1, 234), (2, 12), (3, 53), (4, 23)]
l = [3, 234, 12, 53, 23] [(i, l[i]) for i in range(len(l))]
The same results can be obtained using enumerate()
:
sage: list(enumerate(l))
[(0, 3), (1, 234), (2, 12), (3, 53), (4, 23)]
list(enumerate(l))
Here is the analogue of list slicing:
sage: list(Permutations(3))
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
sage: list(Permutations(3))[1:4]
[[1, 3, 2], [2, 1, 3], [2, 3, 1]]
sage: import itertools
sage: list(itertools.islice(Permutations(3), 1r, 4r))
[[1, 3, 2], [2, 1, 3], [2, 3, 1]]
list(Permutations(3)) list(Permutations(3))[1:4] import itertools list(itertools.islice(Permutations(3), 1r, 4r))
Note that all calls to islice
must have arguments of type int
and
not Sage integers.
The behaviour of the functions map()
and filter()
has
changed between Python 2 and Python 3. In Python 3, they return an
iterator. If you want to return a list like in Python 2 you need to explicitly
wrap them in list()
:
sage: list(map(lambda z: z.cycle_type(), Permutations(3)))
[[1, 1, 1], [2, 1], [2, 1], [3], [3], [2, 1]]
sage: list(filter(lambda z: z.has_pattern([1,2]), Permutations(3)))
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]]
list(map(lambda z: z.cycle_type(), Permutations(3))) list(filter(lambda z: z.has_pattern([1,2]), Permutations(3)))
Defining new iterators#
One can very easily write new iterators using the keyword
yield
. The following function does nothing interesting beyond
demonstrating the use of yield
:
sage: def f(n):
....: for i in range(n):
....: yield i
sage: [ u for u in f(5) ]
[0, 1, 2, 3, 4]
def f(n): for i in range(n): yield i [ u for u in f(5) ]
Iterators can be recursive:
sage: def words(alphabet,l):
....: if l == 0:
....: yield []
....: else:
....: for word in words(alphabet, l-1):
....: for a in alphabet:
....: yield word + [a]
sage: [ w for w in words(['a','b','c'], 3) ]
[['a', 'a', 'a'], ['a', 'a', 'b'], ['a', 'a', 'c'], ['a', 'b', 'a'], ['a', 'b', 'b'], ['a', 'b', 'c'], ['a', 'c', 'a'], ['a', 'c', 'b'], ['a', 'c', 'c'], ['b', 'a', 'a'], ['b', 'a', 'b'], ['b', 'a', 'c'], ['b', 'b', 'a'], ['b', 'b', 'b'], ['b', 'b', 'c'], ['b', 'c', 'a'], ['b', 'c', 'b'], ['b', 'c', 'c'], ['c', 'a', 'a'], ['c', 'a', 'b'], ['c', 'a', 'c'], ['c', 'b', 'a'], ['c', 'b', 'b'], ['c', 'b', 'c'], ['c', 'c', 'a'], ['c', 'c', 'b'], ['c', 'c', 'c']]
sage: sum(1 for w in words(['a','b','c'], 3))
27
def words(alphabet,l): if l == 0: yield [] else: for word in words(alphabet, l-1): for a in alphabet: yield word + [a] [ w for w in words(['a','b','c'], 3) ] sum(1 for w in words(['a','b','c'], 3))
Here is another recursive iterator:
sage: def dyck_words(l):
....: if l==0:
....: yield ''
....: else:
....: for k in range(l):
....: for w1 in dyck_words(k):
....: for w2 in dyck_words(l-k-1):
....: yield '('+w1+')'+w2
sage: list(dyck_words(4))
['()()()()',
'()()(())',
'()(())()',
'()(()())',
'()((()))',
'(())()()',
'(())(())',
'(()())()',
'((()))()',
'(()()())',
'(()(()))',
'((())())',
'((()()))',
'(((())))']
sage: sum(1 for w in dyck_words(5))
42
def dyck_words(l): if l==0: yield '' else: for k in range(l): for w1 in dyck_words(k): for w2 in dyck_words(l-k-1): yield '('+w1+')'+w2 list(dyck_words(4)) sum(1 for w in dyck_words(5))
Standard Iterables#
Finally, many standard Python and Sage objects are iterable; that is one may iterate through their elements:
sage: sum( x^len(s) for s in Subsets(8) )
x^8 + 8*x^7 + 28*x^6 + 56*x^5 + 70*x^4 + 56*x^3 + 28*x^2 + 8*x + 1
sage: sum( x^p.length() for p in Permutations(3) )
x^3 + 2*x^2 + 2*x + 1
sage: factor(sum( x^p.length() for p in Permutations(3) ))
(x^2 + x + 1)*(x + 1)
sage: P = Permutations(5)
sage: all( p in P for p in P )
True
sage: for p in GL(2, 2): print(p); print("")
[1 0]
[0 1]
[0 1]
[1 0]
[0 1]
[1 1]
[1 1]
[0 1]
[1 1]
[1 0]
[1 0]
[1 1]
sage: for p in Partitions(3): print(p)
[3]
[2, 1]
[1, 1, 1]
sum( x^len(s) for s in Subsets(8) ) sum( x^p.length() for p in Permutations(3) ) factor(sum( x^p.length() for p in Permutations(3) )) P = Permutations(5) all( p in P for p in P ) for p in GL(2, 2): print(p); print("") for p in Partitions(3): print(p)
Beware of infinite loops:
sage: for p in Partitions(): print(p) # not tested
for p in Partitions(): print(p) # not tested
sage: for p in Primes(): print(p) # not tested
for p in Primes(): print(p) # not tested
Infinite loops can nevertheless be very useful:
sage: exists( Primes(), lambda p: not is_prime(mersenne(p)) )
(True, 11)
sage: counter_examples = (p for p in Primes() if not is_prime(mersenne(p)))
sage: next(counter_examples)
11
exists( Primes(), lambda p: not is_prime(mersenne(p)) ) counter_examples = (p for p in Primes() if not is_prime(mersenne(p))) next(counter_examples)