Hyperelliptic curves over a general ring#
EXAMPLES:
sage: P.<x> = GF(5)[]
sage: f = x^5 - 3*x^4 - 2*x^3 + 6*x^2 + 3*x - 1
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Finite Field of size 5
defined by y^2 = x^5 + 2*x^4 + 3*x^3 + x^2 + 3*x + 4
P.<x> = GF(5)[] f = x^5 - 3*x^4 - 2*x^3 + 6*x^2 + 3*x - 1 C = HyperellipticCurve(f); C
sage: P.<x> = QQ[]
sage: f = 4*x^5 - 30*x^3 + 45*x - 22
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Rational Field defined by y^2 = 4*x^5 - 30*x^3 + 45*x - 22
sage: C.genus()
2
sage: D = C.affine_patch(0)
sage: D.defining_polynomials()[0].parent()
Multivariate Polynomial Ring in x1, x2 over Rational Field
P.<x> = QQ[] f = 4*x^5 - 30*x^3 + 45*x - 22 C = HyperellipticCurve(f); C C.genus() D = C.affine_patch(0) D.defining_polynomials()[0].parent()
- class sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic(PP, f, h=None, names=None, genus=None)#
Bases:
ProjectivePlaneCurve
- base_extend(R)#
Returns this HyperellipticCurve over a new base ring
R
.EXAMPLES:
sage: # needs sage.rings.padics sage: R.<x> = QQ[] sage: H = HyperellipticCurve(x^5 - 10*x + 9) sage: K = Qp(3, 5) sage: L.<a> = K.extension(x^30 - 3) sage: HK = H.change_ring(K) sage: HL = HK.change_ring(L); HL Hyperelliptic Curve over 3-adic Eisenstein Extension Field in a defined by x^30 - 3 defined by (1 + O(a^150))*y^2 = (1 + O(a^150))*x^5 + (2 + 2*a^30 + a^60 + 2*a^90 + 2*a^120 + O(a^150))*x + a^60 + O(a^210) sage: R.<x> = FiniteField(7)[] sage: H = HyperellipticCurve(x^8 + x + 5) sage: H.base_extend(FiniteField(7^2, 'a')) # needs sage.rings.finite_rings Hyperelliptic Curve over Finite Field in a of size 7^2 defined by y^2 = x^8 + x + 5
# needs sage.rings.padics R.<x> = QQ[] H = HyperellipticCurve(x^5 - 10*x + 9) K = Qp(3, 5) L.<a> = K.extension(x^30 - 3) HK = H.change_ring(K) HL = HK.change_ring(L); HL R.<x> = FiniteField(7)[] H = HyperellipticCurve(x^8 + x + 5) H.base_extend(FiniteField(7^2, 'a')) # needs sage.rings.finite_rings
- change_ring(R)#
Returns this HyperellipticCurve over a new base ring
R
.EXAMPLES:
sage: # needs sage.rings.padics sage: R.<x> = QQ[] sage: H = HyperellipticCurve(x^5 - 10*x + 9) sage: K = Qp(3, 5) sage: L.<a> = K.extension(x^30 - 3) sage: HK = H.change_ring(K) sage: HL = HK.change_ring(L); HL Hyperelliptic Curve over 3-adic Eisenstein Extension Field in a defined by x^30 - 3 defined by (1 + O(a^150))*y^2 = (1 + O(a^150))*x^5 + (2 + 2*a^30 + a^60 + 2*a^90 + 2*a^120 + O(a^150))*x + a^60 + O(a^210) sage: R.<x> = FiniteField(7)[] sage: H = HyperellipticCurve(x^8 + x + 5) sage: H.base_extend(FiniteField(7^2, 'a')) # needs sage.rings.finite_rings Hyperelliptic Curve over Finite Field in a of size 7^2 defined by y^2 = x^8 + x + 5
# needs sage.rings.padics R.<x> = QQ[] H = HyperellipticCurve(x^5 - 10*x + 9) K = Qp(3, 5) L.<a> = K.extension(x^30 - 3) HK = H.change_ring(K) HL = HK.change_ring(L); HL R.<x> = FiniteField(7)[] H = HyperellipticCurve(x^8 + x + 5) H.base_extend(FiniteField(7^2, 'a')) # needs sage.rings.finite_rings
- genus()#
- has_odd_degree_model()#
Return True if an odd degree model of self exists over the field of definition; False otherwise.
Use
odd_degree_model
to calculate an odd degree model.EXAMPLES:
sage: x = QQ['x'].0 sage: HyperellipticCurve(x^5 + x).has_odd_degree_model() True sage: HyperellipticCurve(x^6 + x).has_odd_degree_model() True sage: HyperellipticCurve(x^6 + x + 1).has_odd_degree_model() False
x = QQ['x'].0 HyperellipticCurve(x^5 + x).has_odd_degree_model() HyperellipticCurve(x^6 + x).has_odd_degree_model() HyperellipticCurve(x^6 + x + 1).has_odd_degree_model()
- hyperelliptic_polynomials(K=None, var='x')#
EXAMPLES:
sage: R.<x> = QQ[]; C = HyperellipticCurve(x^3 + x - 1, x^3/5); C Hyperelliptic Curve over Rational Field defined by y^2 + 1/5*x^3*y = x^3 + x - 1 sage: C.hyperelliptic_polynomials() (x^3 + x - 1, 1/5*x^3)
R.<x> = QQ[]; C = HyperellipticCurve(x^3 + x - 1, x^3/5); C C.hyperelliptic_polynomials()
- invariant_differential()#
Returns
, as an element of the Monsky-Washnitzer cohomology of selfEXAMPLES:
sage: R.<x> = QQ['x'] sage: C = HyperellipticCurve(x^5 - 4*x + 4) sage: C.invariant_differential() 1 dx/2y
R.<x> = QQ['x'] C = HyperellipticCurve(x^5 - 4*x + 4) C.invariant_differential()
- is_singular()#
Returns False, because hyperelliptic curves are smooth projective curves, as checked on construction.
EXAMPLES:
sage: R.<x> = QQ[] sage: H = HyperellipticCurve(x^5 + 1) sage: H.is_singular() False
R.<x> = QQ[] H = HyperellipticCurve(x^5 + 1) H.is_singular()
A hyperelliptic curve with genus at least 2 always has a singularity at infinity when viewed as a plane projective curve. This can be seen in the following example.:
sage: R.<x> = QQ[] sage: H = HyperellipticCurve(x^5 + 2) sage: from sage.misc.verbose import set_verbose sage: set_verbose(-1) sage: H.is_singular() False sage: from sage.schemes.curves.projective_curve import ProjectivePlaneCurve sage: ProjectivePlaneCurve.is_singular(H) True
R.<x> = QQ[] H = HyperellipticCurve(x^5 + 2) from sage.misc.verbose import set_verbose set_verbose(-1) H.is_singular() from sage.schemes.curves.projective_curve import ProjectivePlaneCurve ProjectivePlaneCurve.is_singular(H)
- is_smooth()#
Returns True, because hyperelliptic curves are smooth projective curves, as checked on construction.
EXAMPLES:
sage: R.<x> = GF(13)[] sage: H = HyperellipticCurve(x^8 + 1) sage: H.is_smooth() True
R.<x> = GF(13)[] H = HyperellipticCurve(x^8 + 1) H.is_smooth()
A hyperelliptic curve with genus at least 2 always has a singularity at infinity when viewed as a plane projective curve. This can be seen in the following example.:
sage: # needs sage.rings.finite_rings sage: R.<x> = GF(27, 'a')[] sage: H = HyperellipticCurve(x^10 + 2) sage: from sage.misc.verbose import set_verbose sage: set_verbose(-1) sage: H.is_smooth() True sage: from sage.schemes.curves.projective_curve import ProjectivePlaneCurve sage: ProjectivePlaneCurve.is_smooth(H) False
# needs sage.rings.finite_rings R.<x> = GF(27, 'a')[] H = HyperellipticCurve(x^10 + 2) from sage.misc.verbose import set_verbose set_verbose(-1) H.is_smooth() from sage.schemes.curves.projective_curve import ProjectivePlaneCurve ProjectivePlaneCurve.is_smooth(H)
- jacobian()#
- lift_x(x, all=False)#
- local_coord(P, prec=20, name='t')#
Calls the appropriate local_coordinates function
INPUT:
P
– a point on selfprec
– desired precision of the local coordinatesname
– generator of the power series ring (default:t
)
OUTPUT:
such that , where is the local parameter atEXAMPLES:
sage: R.<x> = QQ['x'] sage: H = HyperellipticCurve(x^5 - 23*x^3 + 18*x^2 + 40*x) sage: H.local_coord(H(1 ,6), prec=5) (1 + t + O(t^5), 6 + t - 7/2*t^2 - 1/2*t^3 - 25/48*t^4 + O(t^5)) sage: H.local_coord(H(4, 0), prec=7) (4 + 1/360*t^2 - 191/23328000*t^4 + 7579/188956800000*t^6 + O(t^7), t + O(t^7)) sage: H.local_coord(H(0, 1, 0), prec=5) (t^-2 + 23*t^2 - 18*t^4 - 569*t^6 + O(t^7), t^-5 + 46*t^-1 - 36*t - 609*t^3 + 1656*t^5 + O(t^6))
R.<x> = QQ['x'] H = HyperellipticCurve(x^5 - 23*x^3 + 18*x^2 + 40*x) H.local_coord(H(1 ,6), prec=5) H.local_coord(H(4, 0), prec=7) H.local_coord(H(0, 1, 0), prec=5)
AUTHOR:
Jennifer Balakrishnan (2007-12)
- local_coordinates_at_infinity(prec=20, name='t')#
For the genus
hyperelliptic curve , return such that , where is the local parameter at infinityINPUT:
prec
– desired precision of the local coordinatesname
– generator of the power series ring (default:t
)
OUTPUT:
such that and is the local parameter at infinityEXAMPLES:
sage: R.<x> = QQ['x'] sage: H = HyperellipticCurve(x^5 - 5*x^2 + 1) sage: x, y = H.local_coordinates_at_infinity(10) sage: x t^-2 + 5*t^4 - t^8 - 50*t^10 + O(t^12) sage: y t^-5 + 10*t - 2*t^5 - 75*t^7 + 50*t^11 + O(t^12)
R.<x> = QQ['x'] H = HyperellipticCurve(x^5 - 5*x^2 + 1) x, y = H.local_coordinates_at_infinity(10) x y
sage: R.<x> = QQ['x'] sage: H = HyperellipticCurve(x^3 - x + 1) sage: x, y = H.local_coordinates_at_infinity(10) sage: x t^-2 + t^2 - t^4 - t^6 + 3*t^8 + O(t^12) sage: y t^-3 + t - t^3 - t^5 + 3*t^7 - 10*t^11 + O(t^12)
R.<x> = QQ['x'] H = HyperellipticCurve(x^3 - x + 1) x, y = H.local_coordinates_at_infinity(10) x y
AUTHOR:
Jennifer Balakrishnan (2007-12)
- local_coordinates_at_nonweierstrass(P, prec=20, name='t')#
For a non-Weierstrass point
on the hyperelliptic curve , return such that , where is the local parameter.INPUT:
P = (a, b)
– a non-Weierstrass point on selfprec
– desired precision of the local coordinatesname
– gen of the power series ring (default:t
)
OUTPUT:
such that and is the local parameter atEXAMPLES:
sage: R.<x> = QQ['x'] sage: H = HyperellipticCurve(x^5 - 23*x^3 + 18*x^2 + 40*x) sage: P = H(1, 6) sage: x, y = H.local_coordinates_at_nonweierstrass(P, prec=5) sage: x 1 + t + O(t^5) sage: y 6 + t - 7/2*t^2 - 1/2*t^3 - 25/48*t^4 + O(t^5) sage: Q = H(-2, 12) sage: x, y = H.local_coordinates_at_nonweierstrass(Q, prec=5) sage: x -2 + t + O(t^5) sage: y 12 - 19/2*t - 19/32*t^2 + 61/256*t^3 - 5965/24576*t^4 + O(t^5)
R.<x> = QQ['x'] H = HyperellipticCurve(x^5 - 23*x^3 + 18*x^2 + 40*x) P = H(1, 6) x, y = H.local_coordinates_at_nonweierstrass(P, prec=5) x y Q = H(-2, 12) x, y = H.local_coordinates_at_nonweierstrass(Q, prec=5) x y
AUTHOR:
Jennifer Balakrishnan (2007-12)
- local_coordinates_at_weierstrass(P, prec=20, name='t')#
For a finite Weierstrass point on the hyperelliptic curve
, returns such that , where is the local parameter.INPUT:
P
– a finite Weierstrass point on selfprec
– desired precision of the local coordinatesname
– gen of the power series ring (default: )
OUTPUT:
such that and is the local parameter atEXAMPLES:
sage: R.<x> = QQ['x'] sage: H = HyperellipticCurve(x^5 - 23*x^3 + 18*x^2 + 40*x) sage: A = H(4, 0) sage: x, y = H.local_coordinates_at_weierstrass(A, prec=7) sage: x 4 + 1/360*t^2 - 191/23328000*t^4 + 7579/188956800000*t^6 + O(t^7) sage: y t + O(t^7) sage: B = H(-5, 0) sage: x, y = H.local_coordinates_at_weierstrass(B, prec=5) sage: x -5 + 1/1260*t^2 + 887/2000376000*t^4 + O(t^5) sage: y t + O(t^5)
R.<x> = QQ['x'] H = HyperellipticCurve(x^5 - 23*x^3 + 18*x^2 + 40*x) A = H(4, 0) x, y = H.local_coordinates_at_weierstrass(A, prec=7) x y B = H(-5, 0) x, y = H.local_coordinates_at_weierstrass(B, prec=5) x y
- AUTHOR:
Jennifer Balakrishnan (2007-12)
Francis Clarke (2012-08-26)
- monsky_washnitzer_gens()#
- odd_degree_model()#
Return an odd degree model of self, or raise ValueError if one does not exist over the field of definition.
EXAMPLES:
sage: x = QQ['x'].gen() sage: H = HyperellipticCurve((x^2 + 2)*(x^2 + 3)*(x^2 + 5)); H Hyperelliptic Curve over Rational Field defined by y^2 = x^6 + 10*x^4 + 31*x^2 + 30 sage: H.odd_degree_model() Traceback (most recent call last): ... ValueError: No odd degree model exists over field of definition sage: K2 = QuadraticField(-2, 'a') # needs sage.rings.number_field sage: Hp2 = H.change_ring(K2).odd_degree_model(); Hp2 # needs sage.rings.number_field Hyperelliptic Curve over Number Field in a with defining polynomial x^2 + 2 with a = 1.414213562373095?*I defined by y^2 = 6*a*x^5 - 29*x^4 - 20*x^2 + 6*a*x + 1 sage: K3 = QuadraticField(-3, 'b') # needs sage.rings.number_field sage: Hp3 = H.change_ring(QuadraticField(-3, 'b')).odd_degree_model(); Hp3 # needs sage.rings.number_field Hyperelliptic Curve over Number Field in b with defining polynomial x^2 + 3 with b = 1.732050807568878?*I defined by y^2 = -4*b*x^5 - 14*x^4 - 20*b*x^3 - 35*x^2 + 6*b*x + 1 Of course, ``Hp2`` and ``Hp3`` are isomorphic over the composite extension. One consequence of this is that odd degree models reduced over "different" fields should have the same number of points on their reductions. 43 and 67 split completely in the compositum, so when we reduce we find: sage: # needs sage.rings.number_field sage: P2 = K2.factor(43)[0][0] sage: P3 = K3.factor(43)[0][0] sage: Hp2.change_ring(K2.residue_field(P2)).frobenius_polynomial() x^4 - 16*x^3 + 134*x^2 - 688*x + 1849 sage: Hp3.change_ring(K3.residue_field(P3)).frobenius_polynomial() x^4 - 16*x^3 + 134*x^2 - 688*x + 1849 sage: H.change_ring(GF(43)).odd_degree_model().frobenius_polynomial() # needs sage.rings.finite_rings x^4 - 16*x^3 + 134*x^2 - 688*x + 1849 sage: # needs sage.rings.number_field sage: P2 = K2.factor(67)[0][0] sage: P3 = K3.factor(67)[0][0] sage: Hp2.change_ring(K2.residue_field(P2)).frobenius_polynomial() x^4 - 8*x^3 + 150*x^2 - 536*x + 4489 sage: Hp3.change_ring(K3.residue_field(P3)).frobenius_polynomial() x^4 - 8*x^3 + 150*x^2 - 536*x + 4489 sage: H.change_ring(GF(67)).odd_degree_model().frobenius_polynomial() # needs sage.rings.finite_rings x^4 - 8*x^3 + 150*x^2 - 536*x + 4489
x = QQ['x'].gen() H = HyperellipticCurve((x^2 + 2)*(x^2 + 3)*(x^2 + 5)); H H.odd_degree_model() K2 = QuadraticField(-2, 'a') # needs sage.rings.number_field Hp2 = H.change_ring(K2).odd_degree_model(); Hp2 # needs sage.rings.number_field K3 = QuadraticField(-3, 'b') # needs sage.rings.number_field Hp3 = H.change_ring(QuadraticField(-3, 'b')).odd_degree_model(); Hp3 # needs sage.rings.number_field # needs sage.rings.number_field P2 = K2.factor(43)[0][0] P3 = K3.factor(43)[0][0] Hp2.change_ring(K2.residue_field(P2)).frobenius_polynomial() Hp3.change_ring(K3.residue_field(P3)).frobenius_polynomial() H.change_ring(GF(43)).odd_degree_model().frobenius_polynomial() # needs sage.rings.finite_rings # needs sage.rings.number_field P2 = K2.factor(67)[0][0] P3 = K3.factor(67)[0][0] Hp2.change_ring(K2.residue_field(P2)).frobenius_polynomial() Hp3.change_ring(K3.residue_field(P3)).frobenius_polynomial() H.change_ring(GF(67)).odd_degree_model().frobenius_polynomial() # needs sage.rings.finite_rings
- rational_points(**kwds)#
Find rational points on the hyperelliptic curve, all arguments are passed on to
sage.schemes.generic.algebraic_scheme.rational_points()
.EXAMPLES:
For the LMFDB genus 2 curve 932.a.3728.1:
sage: R.<x> = PolynomialRing(QQ) sage: C = HyperellipticCurve(R([0, -1, 1, 0, 1, -2, 1]), R([1])) sage: C.rational_points(bound=8) [(-1 : -3 : 1), (-1 : 2 : 1), (0 : -1 : 1), (0 : 0 : 1), (0 : 1 : 0), (1/2 : -5/8 : 1), (1/2 : -3/8 : 1), (1 : -1 : 1), (1 : 0 : 1)]
R.<x> = PolynomialRing(QQ) C = HyperellipticCurve(R([0, -1, 1, 0, 1, -2, 1]), R([1])) C.rational_points(bound=8)
Check that github issue #29509 is fixed for the LMFDB genus 2 curve 169.a.169.1:
sage: C = HyperellipticCurve(R([0, 0, 0, 0, 1, 1]), R([1, 1, 0, 1])) sage: C.rational_points(bound=10) [(-1 : 0 : 1), (-1 : 1 : 1), (0 : -1 : 1), (0 : 0 : 1), (0 : 1 : 0)]
C = HyperellipticCurve(R([0, 0, 0, 0, 1, 1]), R([1, 1, 0, 1])) C.rational_points(bound=10)
An example over a number field:
sage: R.<x> = PolynomialRing(QuadraticField(2)) # needs sage.rings.number_field sage: C = HyperellipticCurve(R([1, 0, 0, 0, 0, 1])) # needs sage.rings.number_field sage: C.rational_points(bound=2) # needs sage.rings.number_field [(-1 : 0 : 1), (0 : -1 : 1), (0 : 1 : 0), (0 : 1 : 1), (1 : -a : 1), (1 : a : 1)]
R.<x> = PolynomialRing(QuadraticField(2)) # needs sage.rings.number_field C = HyperellipticCurve(R([1, 0, 0, 0, 0, 1])) # needs sage.rings.number_field C.rational_points(bound=2) # needs sage.rings.number_field
- sage.schemes.hyperelliptic_curves.hyperelliptic_generic.is_HyperellipticCurve(C)#
EXAMPLES:
sage: from sage.schemes.hyperelliptic_curves.hyperelliptic_generic import is_HyperellipticCurve sage: R.<x> = QQ[]; C = HyperellipticCurve(x^3 + x - 1); C Hyperelliptic Curve over Rational Field defined by y^2 = x^3 + x - 1 sage: is_HyperellipticCurve(C) True
from sage.schemes.hyperelliptic_curves.hyperelliptic_generic import is_HyperellipticCurve R.<x> = QQ[]; C = HyperellipticCurve(x^3 + x - 1); C is_HyperellipticCurve(C)